27 resultados para FLEXURAL PSORIASIS

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under the environment of seawater, durability of concrete materials is one of the chief factors considered in the design of structures. The decrease of durability of structures is induced by the evolution of micro-damage due to the erosion of chlorine and sulfate ions, which is characterized by the reduction of modulus, strength, and toughness of the material. In this paper, the variation of the flexural strength of cement mortar under sulfate erosion is investigated. The results obtained in present work indicate that the erosion time, concentration of sulfate solution, and water-to-cement ratio will significantly affect the flexural strength. Crown Copyright (c) 2008 Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The simplified governing equations and corresponding boundary conditions of flexural vibration of viscoelastically damped unsymmetrical sandwich plates are given. The asymptotic solution of the equations is then discussed. If only the first terms of the asymptotic solution of all variables are taken as an approximate solution, the result is identical with that obtained from the Modal Strain Energy (MSE) Method. As more terms of the asymptotic solution are taken, the successive calculations show improved accuracy. With the natural frequencies and the modal loss factors of a damped sandwich plate known, one can calculate the response of the plate to various loads providing a reliable basis for engineering design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under the environment of seawater, durability of concrete materials is one of the chief factors considered in the design of structures. The decrease of durability of structures is induced by the evolution of micro-damage due to the erosion of chlorine and sulfate ions, which is characterized by the reduction of modulus, strength, and toughness of the material. In this paper, the variation of the flexural strength of cement mortar under sulfate erosion is investigated. The results obtained in present work indicate that the erosion time, concentration of sulfate solution, and water-to-cement ratio will significantly affect the flexural strength. Crown Copyright (c) 2008 Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The propagation characteristics of fiexural waves in periodic grid structures designed with the idea of phononic crystals are investigated by combining the Bloch theorem with the finite element method. This combined analysis yields phase constant surfaces, which predict the location and the extension of band gaps, as well as the directions and the regions of wave propagation at assigned frequencies. The predictions are validated by computation and experimental analysis of the harmonic responses of a finite structure with 11 × 11 unit cells. The fiexural wave is localized at the point of excitation in band gaps, while the directional behaviour occurs at particular frequencies in pass bands. These studies provide guidelines to designing periodic structures for vibration attenuation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immersion in various media has different effect on the properties of dental composites, such as sorption, solubility, elution of unreacted monomers, flexural strength, and flexural elastic modulus. In the present work, the effect of immersion in various media and the relationship between the variation of these properties and the components of dental composite were investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flexural fatigue tests were conducted on injection-molded short fiber composites, carbon fiber/poly(phenylene ether ketone) (PEK-C) and glass fiber/PEK-C (with addition of polyphenylene sulfide for improving adhesion between matrix and fibers), using four-point bending at stress ratio of 0.1. The fatigue behavior of these materials was presented. By comparing the S-N curves and analyzing the fracture surfaces of the two materials, the similarity and difference of the failure mechanisms in the two materials were discussed. It is shown that the flexural fatigue failure of the studied materials is governed by their respective tensile properties. The matrix yielding is main failure mechanism at high stress, while at lower stress the fatigue properties appear fiber and interface dominated. (C) 1997 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work investigates the effects of cyclic fatigue loading on the residual properties of an injection-molded composite, carbon-fiber-reinforced poly(phenylene ether ketone) (CF/PEK-C), and damage development in this material under fatigue lending. Test specimens, which had been conditioned to various preselected fatigue damage stages, were measured for their residual properties. The results indicated that cyclic fatigue loading alters the constitutive behavior of the injection-molded composite, especially in the non-linear portion of the stress/strain curve. The residual strength decreases with increase in the number of fatigue cycles as a consequence of the accumulation of fatigue damage, which is dominated by the growth of microcracks. While the residual modulus increases slightly with cyclic fatigue loading, this is probably due to the oriented hardening resulting from creep deformation which is induced during cyclic loading. (C) 1997 Elsevier Science Limited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A theoretical model is presented to investigate the size-dependent bending elastic properties of a nanobeam with the influence of the surface relaxation and the surface tension taken into consideration. The surface layer and its thickness of a nanostructure are defined unambiguously. A three-dimensional (3D) crystal model for a nanofilm with n layers of relaxed atoms is investigated. The four nonzero elastic constants of the nanofilm are derived, and then the Young's modulus for simple tension is obtained. Using the relation of energy equilibrium, the size-dependent effective elastic modulus and effective flexural rigidity of a nanobeam with two kinds of cross sections are derived, and their dependence on the surface relaxation and the surface tension is analysed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Detailed investigations on the microstructure and the mechanical properties of the wing membrane of the dragonfly were carried out. It was found that in the direction of the thickness the membrane was divided into three layers rather than as traditionally considered as a single entity, and on the surfaces the membrane displayed a random distribution rough microstructure that was composed of numerous nanometer scale columns coated by the cuticle wax secreted. The characteristics of the surfaces were accurately measured and a statistical radial distribution function of the columns was presented to describe the structural properties of the surfaces. Based on the surface microstructure, the mechanical properties of the membranes taken separately from the wings of living and dead dragonflies were investigated by the nanoindentation technique. The Young's moduli obtained here are approximately two times greater than the previous result, and the reasons that yield the difference are discussed. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A finite element analysis associated with an asymptotic solution method for the harmonic flexural vibration of viscoelastically damped unsymmetrical sandwich plates is given. The element formulation is based on generalization of the discrete Kirchhoff theory (DKT) element formulation. The results obtained with the first order approximation of the asymptotic solution presented here are the same as those obtained by means of the modal strain energy (MSE) method. By taking more terms of the asymptotic solution, with successive calculations and use of the Padé approximants method, accuracy can be improved. The finite element computation has been verified by comparison with an analytical exact solution for rectangular plates with simply supported edges. Results for the same plates with clamped edges are also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bamboo reinforced epoxy possesses reasonably good properties to waarrant its use as a structural material, and is fabricated by utilizing bamboo, an abundant material resource, in the technology of fibre composites. Literature on bamboo-plastics composites is rare. This work is an experimental study of unidirectional bamboo-epoxy laminates of varying laminae number, in which tensile, compressive, flexural and interlaminar shear properties are evaluated. Further, the disposition of bamboo fibre, the parenchymatous tissue, and the resin matrix under different loading conditions are examined. Our results show that the specific strength and specific modulus of bamboo-epoxy laminates are adequate, the former being 3 to 4 times that of mild steel. Its mechanical properties are generally comparable to those of ordinary glass-fibre composites. The fracture behaviour of bamboo-epoxy under different loading conditions were observed using both acoustic emission techniques and scanning electron microscopy. The fracture mode varied with load, the fracture mechanism being similar to glass and carbon reinforced composites. Microstructural analyses revealed that natural bamboo is eligibly a fibre composite in itself; its inclusion in a plastic matrix will help solve the problems of cracking due to desiccation and bioerosion caused by insect pests. Furthermore, the thickness and shape of the composite can be tailored during fabrication to meet specific requirements, thereby enabling a wide spectrum of applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is an experimental study of unidirectional bamboo-epoxy laminates of varying laminae number, in which tensile, compressive, flexural and interlaminar shear properties are evaluated. Further, the disposition of bamboo fibre, the parenchymatous tissue, and the resin matrix under different loading conditions are examined. Our results show that the specific strength and specific modulus of bamboo-epoxy laminates are adequate, the former being 3 to 4 times that of mild steel. Its mechanical properties are generally comparable to those of ordinary glass-fibre composites. The fracture behaviour of bamboo-epoxy under different loading conditions were observed using both acoustic emission techniques and scanning electron microscopy. The fracture mode varied with load, the fracture mechanism being similar to glass and carbon reinforced composites. Microstructural analyses revealed that natural bamboo is eligibly a fibre composite in itself; its inclusion in a plastic matrix will help solve the problems of cracking due to desiccation and bioerosion caused by insect pests. Furthermore, the thickness and shape of the composite can be tailored during fabrication to meet specific requirements, thereby enabling a wide spectrum of applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A three-spring-in-series model is proposed for the nanobelt (NB) indentation test. Compared with the previous two-spring-in-series model, which considers the bending stiffness of atomic force microscope cantilever and the indenter/NB contact stiffness, this model adds a third spring of the NB/substrate contact stiffness. NB is highly flexural due to its large aspect ratio of length to thickness. The bending and lift-off of NB form a localized contact with substrate, which makes the Oliver-Pharr method [W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992)] and Sneddon method [I. N. Sneddon, Int. J. Eng. Sci. 3, 47 (1965)] inappropriate for NB indentation test. Because the NB/substrate deformation may have significant impact on the force-indentation depth data obtained in experiment, the two-spring-in-series model can lead to erroneous predictions on the NB mechanical properties. NB in indentation test can be susceptible to the adhesion influence because of its large surface area to volume ratio. NB/substrate contact and adhesion can have direct and significant impact on the interpretation of experimental data. Through the three-spring-in-series model, the influence of NB/substrate contact and adhesion is analyzed and methods of reducing such influence are also suggested. (C) 2010 American Institute of Physics. [doi:10.1063/1.3432748]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By introducing the flexible 1,1'-(1,4-butanediyl)bis(imidazole) (bbi) ligand into the polyoxovanadate system, five novel polyoxoanion-templated architectures based on [As8V14O42](4-) and [V16O38Cl](6-) building blocks were obtained: [M(bbi)(2)](2)[As8V14O42(H2O)] [M = Co (1), Ni (2), and Zn (3)], [Cu(bbi)](4)[As8V14O42(H2O)] (4), and [Cu(bbi)](6)[V16O38Cl] (5). Compounds 1-3 are isostructural, and they exhibit a binodal (4,6)-connected 2D structure with Schlafli symbol (3(4)center dot 4(2))(3(4)center dot 4(4)center dot 5(4)center dot 6(3))(2), in which the polyoxoanion induces a closed four-membered circuit of M-4(bbi)(4). Compound 4 exhibits an interesting 3D framework constructed from tetradentate [As8V14O42](4-) cluster anions and cationic ladderlike double chains. There exists a bigger M-8(bbi)(6)O-2 circuit in 4. The 3D extended structure of 5 is composed of heptadentate [V16O38Cl](6-) anions and flexural cationic chains; the latter consists of six Cu(bbi) segments arranged alternately. It presents the largest 24-membered circuit of M-24(bbi)(24) so far observed made of bbi molecules and transition-metal cations. Investigation of their structural relations shows the important template role of the polyoxoanions and the synergetic interactions among the polyoxoanions, transition-metal ions, and flexible ligand in the assembly process.